Paper Title
LEVERAGINGLSTMANDGANFORMODERNMALWAREDETECTION

Abstract
The malware booming is a cyberspace equal to the effect of climate change to ecosystems in terms of danger. In the case of significant investments in cybersecurity technologies and staff training, the global community has become locked up in the eternal war with cyber security threats. The multi-form and changing faces of malware are continuously pushing the boundaries of the cybersecurity practitioners employ various approaches like detection and mitigate in coping with this issue. Some old mannerisms like signature- based detection and behavioral analysis are slow to adapt to the speedy evolution of malware types. Consequently, this paper proposes the utilization of the Deep Learning Model, LSTM networks, and GANs to amplify malware detection accuracy and speed. A fast-growing, state-of-the-art technology that leverages raw by testream-based data and deep learning architectures, the AI technology provides better accuracy and performance than the traditional methods. Integration of LSTM and GAN model is the technique that is used for the synthetic generation of data, leading to the expansion of the training datasets, and as a result, the detection accuracy is improved. The paper uses the Virus Share dataset which has more than one million unique samples of the malware as the training and evaluation set for the presented models. Through thorough data preparation including tokenization, augmentation, as well as model training, the LSTM and GAN models convey the better performance in the tasks compared to straight classifiers. The research outcomes come out with 98% accuracy that shows the efficiency of deep learning plays a decisive role in proactive cybersecurity defense. Aside from that, the paper studies the output of ensemble learning and model fusion methods as a way to reduce biases and lift model complexity. Through accommodating the highlighted gaps in the previous studies and the innovation of improved methodologies, this research is designed to ensure experts in cybersecurity are equipped with useful tools to discover and counter advanced cyber threats. Employing the most advanced machine learning algorithms, the study can suggest new tactics for malware detection and modern cybersecurity practices. Keywords - Malware Detection; deep Learning; Graph Convolutional Networks; Cybersecurity; Network Traffic Analysis