
Proceedings of IEEEFORUM International Conference, 01st October, 2017, Pune, India

33

DESIGN AND IMPLEMENTATION OF I2C BUS PROTOCOL ON
FPGA USING VERILOG FOR EEPROM

ABHINAV BODDUPALLI

IVth year, B.TECH, EEE, NIT BHOPAL

E-mail: ramaabhinav@gmail.com

Abstract - The I2C or Inter-Integrated Circuit protocol is a serial communication protocol designed by Philip
semiconductors now termed as NXP semiconductors. This paradigm has been proliferating its use in serial communication.
I2C is a bidirectional 2-wire bus designed to enhance hardware efficiency and increase simplicity of the circuit. This
protocol bolsters multiple masters (which is a limitation with SPI communication) and multiple slaves and also allows
communication between faster and slower devices by a serial data bus (SDA) without data loss. The other line is Serial clock
line (SCL) which transfers the data according to a synchronized clock which is a limitation for UART communication. Other
types of communication protocols like USB, RS-422, RS-485, CAN etc. require more pin connections and signals for
communication. The postulates of I2C over UART, SPI, USB and other protocols indicates I2C’s significance in its use as
communication protocol. This paper makes use of Verilog language in designing and Implementing I2C bus on FPGA
(XC3S100E of SPATAN-3E) which acts as master, for interfacing with EEPROM (24C02) which acts as slave. This design
makes use of Xilinx 14.2 version for design and Implementation.

Keywords - Verilog, I2C, SDA, SCL, FPGA, Master, Slave, HDL.

I. INTRODUCTION

I2C also termed as Inter-Integrated circuit is a multi-
master bus which implies that more than one device
which has capability of controlling the bus can be
connected to it. As there is no data loss or affect
from environment factors, transferring data on I2C
bus increases the device performance. Even though
there exists other types of serial communication such
as SPI (Serial Peripheral Interface) and UART
(Universal Asynchronous Receiver Transmitter), I2C
surpass these buses with its advantages such as its
variable baud rate characteristic which is a limitation
in UART, allowing multiple masters in
communication which is a limitation in SPI, thus it is
used in many applications such as PDA (Personal
Digital Assistants), DVD’s, ADCs, DACs,
Microcontrollers, LCDs, memory devices and so on.
I2C is an example of Intra Bus communication
similar to SPI in which the data transfer occurs
between two devices which belong to the same
system, whereas USB, UART etc. belong to Inter bus
communication class type in which the data transfer
occurs between two devices of different systems.
Also, in I2c each device connected to the bus have
different addresses from each other which is used for
identification of the device for communication.

II. FEATURES OF I2C

 I2C requires only two buses for data

communication namely Serial Data Line (SDA)
and Serial Clock Line (SCL). The SDA allows
communication between Master and Slave
devices whereas SCL synchronizes the data
transfer with clock between master and slave
devices. Because it is synchronized this is an
advantage over UART communication in I2C.

 It is a multi-master bus consisting of collision
and arbitration which prevents control of more

Design and Implementation of I2C Bus Protocol on FPGA using VERILOG for EEPROM

Proceedings of IEEEFORUM International Conference, 01st October, 2017, Pune, India

34

than one master on the bus thus avoiding data
corruption.

 There are modes in which Serial, 8-bit,
bidirectional data transfer can be made. One is
Standard mode in which allows only 7-bit
addresses and 100 kHz communications.

 The Second mode is fast mode in which address
space was expanded to 10-bit and allows 400
kHz communications. Other modes that are
specified are fast mode plus at 1MHz speed,
high-speed mode at 3.4MHz and ultra-fast mode
at 5 MHz communications.

 On-chip filtering preserves data integration by
eliminating the spikes on the bus data line.

 Both master and slave can act as either
Transmitter or Receiver and depending upon on
this there are four modes for the bus operation
which are master transmit, master receive, slave
transmit and slave receive.

 The number of ICs that can be connected to same
bus segment are limited by a maximum bus
capacitive loading of 400pF. The variation of
pull-up resistors with bus capacitance is as
shown in the graph in fig.4. Vccis the Bus-ground
Voltage as shown in fig.2.

III. I2C PROTOCOL WORKING

The working of the I2C protocol which is
bidirectional, open-drain and pulled up by resistors
depends on whether the master device reads/write
data and these operations are decided by R/ ഥܹ bit.
The working for these two conditions is as follows:
 In write operation by the master the mode of

operation is master transmitter-slave receiver
mode, in which master-transmitter sends START
condition followed by the unique address of
slave-receiver and then writes/sends data to it.
Then master terminates the operation with STOP
condition.

 In read operation (master receiver-slave
transmitter), master-receiver sends START
condition followed by unique address of slave-
transmitter and further sends requested register to
read to slave. Now, the master-receiver reads
from slave-transmitter and terminates the data
transfer with STOP condition.

 The START and STOP conditions are always
generated by the master. The I2C bus begin or
terminate the data transfer operation on SDA line
only when SCL line is high (level triggering).
That is, a START condition occurs only when
there is a high-to-low transition on SDA line
when SCL is high and for STOP condition to
occur a low-to-high transition must happen on
SDA line when SCL is high.

 The data transfer on the I2C bus can be separated
into four states which are START, Address
frame, Data frame and STOP conditions. After
initiation of START by master, the 7-bit address
starts its flow with MSB being transferred at first
followed by R/ ഥܹ bit (8th bit). These 8-bits
transfer is also known as the byte format. The
next bit after byte format is the ACK/NACK bit
which signals the transmitter that the byte was
successfully received and another byte may be
sent. After transfer of this address frame of 9-bits
the SCL is made low (which is optional in fact)
and this phenomenon is also known as “clock
stretching” as this delay provides more time to
slave to store the transferred byte or to get ready
for another byte. After the stretch, data frame
transfer is initiated in which 8-bit data is
transferred along with an ACK/NACK bit (9th
bit) that functions same as that of above bit in
address frame. This whole data transfer is
terminated by the master by generating STOP
condition.

IV. FPGA AND ITS FEAURES

Field Programmable Gate Arrays (FPGAs) are
semiconductor devices that are based around a matrix
of configurable logic blocks (CLBs) connected via
programmable interconnects. The one feature that
distinguishes FPGA from ASICs (Application
specified Integrated Circuits) is that FPGA can be
reprogrammed to desired application or functionality
requirements whereas on the other hand ASIC are
manufactured for specific tasks. Due to this
reprogrammable nature, FPGA is used in day-to-day
applications such as ASIC prototyping, Consumer
Electronics, High performance Computing and data
storage, Medical, Video and Image processing, Wired
and Wireless Communications and so on. The type of

Design and Implementation of I2C Bus Protocol on FPGA using VERILOG for EEPROM

Proceedings of IEEEFORUM International Conference, 01st October, 2017, Pune, India

35

FPGA used as I2C’s Master is XC3S100E of family
SPARTAN-3E. The features of Spartan-3E family are
as follows:
 Very low cost, high-performance logic solution

for high-volume, consumer-oriented applications.
 Proven advanced 90-nanometer process

technology.
 Multi-voltage, multi-standard Select I/O interface

pins:
 Up to 376 I/O pins or 156 differential signal

pairs.
 LVCMOS, LVTTL, HSTL, and SSTL single-

ended signal standards.
 3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling.
 622+ Mb/s data transfer rate per I/O.
 True LVDS, RSDS, mini-LVDS, differential

HSTL/SSTL differential I/O.
 Enhanced Double Data Rate (DDR) support.
 DDR SDRAM support up to 333 Mb/s.
 Abundant, flexible logic resources:
 Densities up to 33,192 logic cells, including

optional shift register or distributed RAM
support.

 Efficient wide multiplexers, wide logic.
 Fast look-ahead carry logic.
 Enhanced 18 x 18 multipliers with optional

pipeline.
 IEEE 1149.1/1532 JTAG programming/debug

port.
 Hierarchical Select RAM memory architecture:
 Up to 648 Kbits of fast block RAM.
 Up to 231 Kbits of efficient distributed RAM.
 Up to eight Digital Clock Managers (DCMs):
 Clock skew elimination (delay locked loop).
 Frequency synthesis, multiplication, division.
 High-resolution phase shifting.
 Wide frequency range (5 MHz to over 300

MHz).
 Eight global clocks plus eight additional clocks

per each half of device, plus abundant low-skew
routing.

 Configuration interface to industry-standard
PROMs:

 Low-cost, space-saving SPI serial Flash PROM.
 •X8 or X8/X16 parallel NOR Flash PROM.
 Low-cost Xilinx Platform Flash with JTAG.
 Complete Xilinx ISE and Web PACK software.
 Micro Blaze and Pico Blaze embedded processor

cores.
 Fully compliant 32-/64-bit 33 MHz PCI support

(66 MHz in some devices).
 Low-cost QFP and BGA packaging options.
 Common footprints support easy density

migration.
 Pb (Lead)-free packaging options
 XA Automotive version available.

Fig.6. FPGA kit XC3S100E of SPARTAN -3E family.

V. EEPROM AND ITS FEAURES

Electrically erasable programmable ROM
(EEPROM) is user modified ROM which can be
removed and reprogrammed by raising the voltage
larger than normal electrical voltage. It is a type of
non-volatile memory in which data is stored in small
quantities and this data must be saved when power is
turned off. For a 7-bit address protocol on I2C bus,
when EEPROM is acting as slave the first four
address bits are constant which are “1010” and the
remaining 3-address bits are programmable which
allows to connect a maximum of 23(8) EEPROM’S at
a time. All 24CXX EEPROM families have same
features and differ only in size. The features of
EEPROM (24C02) are as follows:
 Enabled with bidirectional data protocol suitable

for I2C protocol standards.
 Partial age writes are allowed and also has the

advantage of self-timed write cycle.
 Low voltage (1.8V at 100kbps) and standard

voltage (2.7V, 5V at 400kbps) operations are
compatible.

 Schmitt trigger, filtered inputs for noise
suppression.

 Internally Organized 128 x 8 (1K), 256 x 8 (2K),
512 x 8 (4K), 1024 x 8 (8K) or 2048 x 8 (16K).

 Wire protect pin for hardware data protection.
 Availability of automated devices.
 8-byte page (1K, 2K), 16-byte page (4K, 8K,

16K) write modes.

VI. READING AND WRITING FOR EEPROM
(24C02)

 WRITING SEQUENCE:

1. Send the START sequence and the 7-bit data
address with R/ ഥܹ bit low (even address).

2. Send the Internal register number in which
you want to write to.

3. Send the data byte.
4. Optionally, send any further bytes.
5. Send the STOP sequence.

Design and Implementation of I2C Bus Protocol on FPGA using VERILOG for EEPROM

Proceedings of IEEEFORUM International Conference, 01st October, 2017, Pune, India

36

 READING SEQUENCE:

1. Send the START sequence and the 7-bit
address with R/ ഥܹ bit low (even address).

2. Send the Internal address of bearing register.
3. Send the START sequence again which is

termed as “repeated START”.
4. Now again send the 7-bit address with R/ ഥܹ

bit high (odd address).
5. Read data byte which is written into the

register by the slave.
6. Send the STOP sequence.

VII. FSM AND DESIGN STEPS

The design of I2C protocol is made in Verilog
language with the help of states in finite state
machine (FSM) of the bus. This FSM represents the
data transfer format explained above. The diagram for
algorithm of the FSM is shown below. The steps in
this algorithm are:
STATE_IDLE: In this state the I2C bus does not
perform any operation and the bus is idle. Both the
SDA and SCL lines remain high in this state. The
reset bit remains high during this state and the bus
moves to next state only when the reset bit becomes
low shifting the bus to start state.
STATE_START: After reset becomes low this state
is achieved and during this the FPGA master
generates START condition for the initiation of data
transfer shifting the bus to address frame. If reset
becomes high in this state, the bus reverts back its
changes and goes to STATE_IDLE. Also, in this state
the count for the address frame is decided. Ae were
discussing the 7-bit address protocol the count
declared here is 6.
STATE_ADDR: This state executes the address
frame state and if reset becomes high the bus reverts
back to idle. The count is decremented by 1 for each
of the 7-bit address and until count is zero the bus
stays in this state. After annulation of the count the

bus is moved to 8th bit state which is R/ ഥܹ bit. Is reset
is high during this state the bus returns to
STATE_IDLE.
STATE_ RW: After the address frame, this state
decides the operation whether it is read or write
depending on this bit. If this bit is high the operation
is read otherwise it is write operation and this is
acknowledged by the slave.
STATE_ACK: This is the first acknowledgment for
address frame by the slave and it transfers the bus for
initiation of data frame. During this state, the count
for data state is decided and as the data is byte format
the count is 7.
STATE_DATA: In this count is decremented by 1
for each bit of the data and loop continues until count
is zero. After that, bus is transferred to second
acknowledgement.
STATE_ACK_2: This is the 2nd acknowledgment
done by the slave for the data frame state.
STATE_STOP: The master generates STOP
condition and terminates the action of carry by the
bus by making both SDA and SCL high again. If
reset becomes high after this the bus shifts to
STATE_IDLE. If the reset stays zero, the bus makes
the slave ready for another byte transfer by shifting to
STATE_START.

VIII. SIMULATION AND IMPLEMENTATION
RESULTS

The Simulation and Implementation Results for
Writing and Reading to EEPROM slave by FPGA
master using I2C bus are as shown. The results are
Simulated and Synthesized using Xilinx ISE 14.2.

Fig.10. Simulation results for writing data to EEPROM

(24C02)

Design and Implementation of I2C Bus Protocol on FPGA using VERILOG for EEPROM

Proceedings of IEEEFORUM International Conference, 01st October, 2017, Pune, India

37

Fig.11. Simulation results for reading data from EEPROM
(24C02)

Fig.12. Implementation results for writing data to EEPROM

(24C02)

Fig.13. Implementation results for reading data from

EEPROM (24C02).

CONCLUSION AND FUTURE SCOPE

In conclusion, the Design and Implementation of I2C
bus protocol with FPGA (Spartan-3E) as Master and
EEPROM (24C02) as slave is done and the results are
presented using Verilog HDL. The protocol is
implemented in Xilinx ISE 14.2 platform and the
simulations and synthesis are made. The FPGA
master controls the I2C bus while writing operation
and gives control of the I2C bus to EEPROM while

reading operation. Because of its simplicity to
implement, ability to interface fast and slow devices
and other advantages over UART, SPI, etc. makes
I2C the most popular communication to allow serial
transfer between two devices. As the parallel
operation of devices continue to increase the
significance of I2C bus is enhanced. So, this project
can be further extended into interfacing between
multiple masters and slaves.

REFERENCES

[1] Shiva Mehotra, Nisha Charaya., Journal on Design and

Implementation of I2C single master on FPGA using Verilog,
PISER 18, Vol.3,2006, ISSN 2347-6680(E).

[2] Philips Semiconductor “I2C Bus Specification”, April 1995.
[3] Radha R C , RavuriAneesh Kumar, Journal on “Design and

Implementation of I2C Communication Protocol on FPGA
for EEPROM”, International Journal of Scientific &
Engineering Research, Volume 5, Issue 3, March-2014, ISSN
2229-5518.

[4] M.Morris Mano, “Digital Design” EBSCO publishing. Inc.,
2002.

[5] Jonathan Valdez, Jared Becker, Application report on
“Understanding the I2C bus”, Texas Instruments, SLVA704,
June 2015.

[6] Philips Semiconductors, “The I2C Bus Specification”, version
2.1, January 2000.

[7] Philips Semiconductors, “I2C Bus Manual”, AN10216-01,
March 24 2003.

[8] I2C Tutorial “Using the I2C Bus”, http://
www.robotelectronics.co.uk/acatalog/ I2C_Tutorial.html.

[9] I2C tutorials at https://learn.sparkfun.com.
[10] Deepa Kaith, Dr. Janankkumar, B. Patel, Mr. Neeraj Gupta,

Journal on “An Implementation of I2C Slave Interface using
Verilog HDL”, IJMER, Vol.5, Issue.3, March 2015, ISSN:
2249-6645.

[11] O. Romain, T.Cuenin&P.Garda: “Design &modeling of an
I2c Bus Controller”, FDL 0’3, Frankfurt, Deutschland, Sept
23-26, 2003.

[12] Xilinx “SPARTAN-3E FPGA family data sheet”, product
specification, DS 312, July 19, 2013.

[13] Atmel Corporation. “AT24C02 Data Sheet” PDF document,
(2007).

[14] alearningroom’s “i2c bus protocol tutorial”
https://www.youtube.com.

[15] UM10204, “I2C-bus specification and user manual”, Rev.6,
4th April 2014.

