
Proceedings of Science Globe International Conference, 10th June, 2018, Bengaluru, India

1

SDN CONTROLLERS COMPARISON

V R SUDARSANA RAJU

SRIT, Bangalore
E-mail: sudarsanaraj@yahoo.com

Abstract - This paper presents about Software Defined Network (SDN) which is a new networking paradigm where the
architecture moves from the traditional fully distributed model to a more centralized approach. Software Defined
Networking (SDN) is a new networking arch type and is also the most discussed topic of networking technology of recent
years as it brings a lot of new capabilities and allows to solve many hard problems of legacy networks. This approach is also
characterized by the separation of the data and control planes. The SDN proposed an approach which involves in moving
network's intelligence out from the packet switching devices and putting it into a centralized logical controller. Controllers
act as the control point for networks to manage flow between the Application layer and the Data layer through the
Southbound API's and the Northbound API's to create a more flexible network. The forwarding decisions are primarily done
in the controller and then moves down to the switches where it directly executes the logical decisions. Advantages like
global controlling and viewing the whole network at a time are being provided, which is helpful for automating several tasks
like Operation of a network, better server and network utilization, etc.

Keywords - SDN Controller; Software Defined Network.

I. INTRODUCTION

In an SDN Controller, the different network tasks are
carried out by a collection of various pluggable
modules. Basic tasks like gathering information about
capabilities of each device in the network, their
statistics and the availability of devices in the
network can be accomplished. The Controllers with
associating between SDN Controller domains, using
standard application interfaces, such as OpenFlow as
the organizations have started to deploy more SDN
networks. The data plane includes the forwarding
element (switches and routers) and the control plane
includes the controller. The controller provides a high
abstraction level of the forwarding elements
management which is absent in today’s networks.
Therefore, the controller is a fundamental component
of the SDN architecture that will contribute to the
success or failure of SDN. Therefore, there is a need
to assess and compare the different existing
controllers in the market. We are far from a controller
(in some cases referred to as network operating
system) which is hardware and language independent.
However, today’s controllers run as monolithic
applications and they are highly tied to their
programming languages (java, python, C, C++, etc.)
Therefore, SDN specific languages such as Pyretic
and Frenetic offering high-level abstraction languages
were proposed to allow for application portability;
however, they are in reality linked to a specific
controller platform (POX).

Due to the importance of the controller within the
SDN architecture and the diversity of architectures
and Implementations in the market, there is a need to
assess and benchmark all these choices against
different performance indicators.

II. BASIC FUNCTIONS OF SDN
CONTROLLERS

As SDN separates the data plane and the control
plane, the intelligence of the network is moved to the
controller; all computations are done there and many
applications and features can be added as needed. The
basic modules are discussed in where a lightweight
carrier grade controller is proposed. Link discovery
module, topology module, storage module, strategy
making module, flow table module and control data
module are the basic SDN controller’s modules. Two
modules are responsible for providing the routing
service: the topology manager and the link discovery
modules. Collecting the physical link status
information is the role of the link discovery module.
There are two types of link discovery: link discovery
between OpenFlow nodes (switches) and link
discovery between an end host and an OpenFlow
node. The former uses the Link Layer Discovery
Protocol (LLDP). Thus, the provided information by
the link discovery module is used to build the
neighbor database at the controller level. This
database is managed by the topology manager
module to build the global topology database which
relies on the computation of the shortest (and
alternate) path to any OpenFlow node or host. Any
changes or link ruptures are trackable by the link
discovery module. Therefore, the topology manager
module has the role to maintain the topology
information and to recalculate the routes in the
network after any modification in the neighbor
database.

III. FEATURES OF SDN CONTROLLERS

1) Cross platform compatibility
Running cross-platform, allowing multithreading,
being easy to learn, allowing fast memory access and

SDN Controllers Comparison

Proceedings of Science Globe International Conference, 10th June, 2018, Bengaluru, India

2

good memory management are essential
programming languages’ characteristics. When
choosing a certain controller, we have to take these
factors into consideration because they affect the
controller’s performance and development speed.
Python, C++, and Java are the most used languages
for SDN controllers programming. In general, the
Java coded controllers have the characteristic to run
cross-platform and present good modularity, the C
coded controllers provide high performance but lack
high modularity, good memory management and
good GUI and the Python coded ones lack real multi-
threading handling.

2) Southbound Interfaces
Southbound APIs allows control over the network.
These APIs are used by the controller to dynamically
make changes to forwarding rules installed in the data
plane devices consisting of: switches, routers, etc.
While OpenFlow is the most wellknown of the SDN
protocols for southbound APIs, it is not the only one
available or in development. NETCONF
(standardized by IETF), OF-Config (supported by the
Open Network Foundation (ONF)), Opflex
(supported by Cisco) and others are examples of
southbound interfaces used for managing network
devices. Additionally, some routing protocols such as
IS-IS,OSPF, BGP are being also developed as
southbound interfaces in some controllers in the aim
to support hybrid networks (SDN and non-SDN ones)
or to apply the traditional networking in a software-
defined manner.

3) Northbound Interfaces
The northbound APIs are used by the application
layer to communicate with the controller. They are
the most critical part in the SDN controller
architecture. The most valuable benefit of SDN is
derived from its ability to support and enable
innovative applications. Because they are so critical,
northbound APIs must support a wide variety of
applications. These APIs allow also the connection
with automated stacks such as OpenStack or
CloudStack used for Cloud management. Recently,
the ONF turned its focus to the SDN northbound API
after working to standardize the southbound interface
(OpenFlow). They have stablished a Northbound
Working Group that will write code, develop
prototypes and look for standards creation. Currently,
the Representational State Transfer (REST) protocol
seems to be the most used northbound interface and
most of the controllers implement it.

4) OpenFlow Support
The OpenFlow protocol is a key enabler for
softwaredefined networks. It was the first
standardized southbound interface. It allows direct
manipulation of the forwarding plane of OpenFlow
switches. When choosing an OpenFlow controller, we
need to understand the OpenFlow functionality that

the controller supports as well as the development
roadmap to implement newer versions of OpenFlow,
such as v1.3 or v1.4. One reason for needing to take
this into consideration is that important functionality
such as IPv6 support, for example, is not part of
OpenFlow v1.0 but is part of the OpenFlow v1.3
standard.

5) Network programmability
Network programmability is the most important
benefit of the SDN introduction to deal with the
unprecedented management complexities in today’s
network with the explosion in the number of
connected devices and the deployment of new
services. Using the device-by-device paradigm to
manage the high scale future networks will not be
feasible. The old static way of managing network
devices is time consuming, error prone and leads to
inconsistencies. Software defined paradigm comes to
hide these management difficulties introducing
automation and dynamicity in the management
process. Automated scripts can be run through
command-line interfaces (CLIs) and applications can
be deployed on top of the controller platform to
perform predefined tasks and management functions.
The controller support of network programmability
relies essentially on its degree of integration of a wide
number of northbound interfaces, a good graphical
user interface and a CLI.

6) Efficiency (Performance, Reliability,
Scalability, and Security)
The controller efficiency is an umbrella term used to
refer to the different parameters – performance,
scalability, reliability and security. Various metrics,
such as number of interfaces a controller can handle,
latency, throughput, etc. define what we call
performance. Similarly, there are various metrics
defining the scalability, reliability and security. Most
of the work done to compare the controllers consider
only the performance criteria. Additionally, the
centralization of the control in the SDN scheme will
present a serious challenge from the reliability and
the performance perspectives. Thus, the distributed
scheme, supported by some controllers, aims to cope
with this issue.

7) Partnership
Being under good partnership oversight, an SDN
controller will have chances to be maintained and
enhanced for a long time]. The experience in the
network and computer domains, and the economic
capacity of the partner’s organization are the main
criteria biasing trust and use of products. Cisco,
Linux Foundation, Intel, IBM, Juniper, etc. are
examples of reputable organizations entering the
SDN market and participating in controllers
development. Several surveys have been done in the
previous two years providing us with lists of the most
commonly known controllers. Essentially, most of the

SDN Controllers Comparison

Proceedings of Science Globe International Conference, 10th June, 2018, Bengaluru, India

3

listed features are taken into consideration when
comparing the controllers.

8) Programming Language
Programming for a controller make use of common
languages like Python, Java and C++, and may also
use languages like Ruby and Javascript to a certain
extent. A few characteristics of these languages are
that they are very easy to learn, allows faster memory
access, runs cross-platform and allows multiple
threads. Java displays a more rapid runtime when it
comes to business applications.

We note that ONOS and OpenDaylight are the most
featured controllers. These two Java coded controllers
run cross-platforms and present high modularity
using the OSGI container that allows loading bundles
at runtime. Inheriting the power of Java/Javascript in
the graphical user interfaces programming, they
present good GUI feature. Being under the
partnership of well-known network providers and
research communities, they have a clear development
plan and good documentation. Additionally, their
support for the distributed scheme make them able to
conduct a real SDN wide deployment.

The ONOS controller is principally designed for
carrier networks. It gives them the ability to provide
new SDN services along with their initial proprietary
services. ONOS architecture is designed to maintain
high speed and large scale networks. Its main
distinguishing characteristic is its support for hybrid
networks. However, OpenDaylight was primarily
datacenter focused but its latest release (Lithium)
shows a capability to support different kinds of
applications. Many southbound interfaces have been
added (HTTP, COAP, PCEP, LACP, OpFlex, SNMP,
etc.) and new modules have been implemented (IoT
data broker (IoTDM), unified secure channel of USC,
etc.). Thus, it is the first controller entering the IoT
domain. Supporting a wide range of southbound
interfaces and the distributed control paradigm, it
seems to be the controller of the Internet of the
Future. The support of OpenStack Neutron plugin in
its architecture has also a remarkable importance
when deploying software-defined edges responding
to the Edge computing proliferation.

IV. DIFFERENT CONTROLLERS

A. OpenDaylight Controller
OpenDaylight is a community-based Open Source
project, where its goal is to improve SDN by giving
features and protocols that hold up to the industry
standard. This controller has been recently renamed
as the OpenDaylight Platform. It is open to all,
including end users and customers, thereby providing
a common platform for those with motivations and
goals in SDN to work together to find newer
innovative solutions. Under the Linux Foundation,

OpenDaylight consists of support for the OpenFlow
protocol, however, can also support other open SDN
standards. The OpenFlow protocol is considered as
the first SDN standard where it defines the open
communications protocol that allows controllers to
work with the data forwarding plane and allows it to
make changes to the network. This protocol gives
businesses an opportunity to have superior control
over their networks and the ability to adapt well to
their changing needs. The OpenDaylight Controller is
utilized in a wide variety of environments. It supports
a modular controller framework, then provides
support for other SDN standards and forthcoming
protocols. The OpenDaylight Controller applications
can collect network information, perform analytics by
running algorithms, and create new rules throughout
the network, where it also exposes open northbound
APIs.

B. NOX
NOX is a piece of the software-defined networking
(SDN) ecosystem, an explicit platform for building
network control applications. OpenFlow was the first
SDN technology to get real name recognition. NOX
was the first OpenFlow controller which was
primarily developed at NiciraNetworks alongside
OpenFlow, serving as a network control platform that
provides a high-level programmatic interface for
management solutions and the advancements in
newer control applications. Its system-wide
perceptions turned networking into a software issue.
Ever since Nicira donated NOX to the research
community in 2008, it has been the basis for various
research projects in the early exploration of the SDN
space. NOX aims to provide a platform for
developers and researchers which give them the
capability develop novel applications that innovate
within the industrial and business networks. NOX's
applications usually determines how each flow is
routed or not routed in the network.

C. POX
POX is an open source Python-based development
platform for software-defined networking (SDN)
control applications, for instance, OpenFlow SDN
controllers. POX is becoming more commonly used
than NOX; which is a sister project. It allows rapid
development and prototyping. POX uses OpenFlow
or OVSDB protocol for providing a framework for
communicating with SDN switches. Using the Python
programming language, developers can use POX to
create an SDN controller. POX is a tool to educate
people about SDN and is also used for research
purposes and for building network-related
applications. POX Components can be invoked
directly from the Command Line Interface. The
Network functionality is implemented by using these
components in SDN. POX can be utilized as a
primary SDN controller by loading the readily
available default components. Developers can create

SDN Controllers Comparison

Proceedings of Science Globe International Conference, 10th June, 2018, Bengaluru, India

4

a more sophisticated controller by using new
components, or they might write applications that
target the API itself.

D. Ryu
Ryu is an Open Source SDN Controller that is used to
increase the flexibility of the network by making the
task of handling the traffic easier. Ryu provides
several components with full program interfaces that
allow developers to create new network management
and control applications with ease conveniently.
These Components can be used to customise
deployments by organisations to meet their particular
needs.; such that existing components can be quickly
and easily modified and implemented into current
networks to meet the changing needs of different
applications. Ryu, presenting fair features, is a good
choice for small businesses and research applications.
Being Python coded, this controller presents facilities
for applications and modules development. However,
its lack of high modularity and its inability to run
cross-platforms limit its wide use in real market
applications.we will try to compare these controllers
efficiency. Even though it will not be the only
criterion to choose a controller, but processing
requests at high rates with minimum latency is a key
requirement of any controller.

E. Trema
Trema is an OpenFlow controller framework written
in Ruby that provides many solutions to create a
controller in the network. It provides a network
emulator and libraries that can create simple
OpenFlow-based networks on a system. These
features are an efficient way to provide development
and testing environments for networks. It allows
developers to build custom controllers by adding
messaging scripts. Trema focuses on precise coding
methods to reduce the possibility of errors and for
easier code maintenance.

F. Beacon
Beacon is a Java-Language based SDN Controller
that supports Multi-threads and event handling. It is
modular, supports multiple platforms and is very fast.
Its development began in the early 2010s and had
been used in several trials and projects. It is capable
enough to run a data centre and can run for months
without any downtime. Beacon is Open Source and is
currently licensed under GPLv2 and FOSS Exception
v1.0. Code packages can be installed even during
runtime without interrupting other packages. Beacon
can optionally support custom UI Frameworks and
can embed webserver enterprises.

G. Floodlight
Floodlight Open SDN Controller is an enterprise-
class, Apache-licensed, Java-based OpenFlow
Controller developed by Big Switch Networks; that
works with OpenFlow protocol to manage the flow of

traffic in an SDN environment. Floodlight is simple
to use, build, maintain and run. It can also run with
any switches, both physical and virtual, as long as
they support the OpenFlow Protocol. Floodlight is
currently open source; Beacon Controller is a fork of
Floodlight.

H. MuL
Mul is a C Language based SDN OpenFlow
Controller. It supports a multi-threading infrastructure
and has a multi-leveled northbound interface for
hosting various applications. Currently, it aims to
support southbound interfaces such as OpenFlow
1.3,1.4 and of-config ovsdb, etc. It is designed with
reliability and performance in mind which is essential
for critical networks. Mul is easy to learn and
implement, making it highly flexible.

I. Maestro
Maestro is a controller for implementing network
control applications. It provides interfaces for
implementation of modular network applications
which can control the state of the network and can be
used to coordinate interactions between devices.
Maestro can improve a machine's throughput
performance by exploiting its parallelism. Maestro
requires as little effort as possible to manage the
parallelization since it does the complex job of
managing the workloads as well as the scheduling of
threads.

CONCLUSION

In this paper, we conducted a comparison of
severalcontrollers based on multiple criteria. Thus,
due to the diversity of SDNapplications and the
controller’suses, the choice of the best-fitted
controller will be somehow application dependent.
We have found that OpenDaylight is a good choice as
a full-featured controller. Supporting wide range of
applications with a good ecosystem gives it a real
chance to become the useful controller.

REFERENCES

Books:
[1] Thomas D. Nadeau & Ken Gray (2016), SDN: Software

Defined Networks, O`REILLY, Beijing.

Websites:
[1] https://onosproject.org/
[2] D. Kreutz F. M. V. Ramos P. Esteves C. Esteve S.

Azodolmolky "Software-Defined Networking: A
Comprehensive Survey" Proceedings of the
IEEE vol. 103 pp. 10-13 2016.

[3] Q. Y. Zuo M. Chen G. S. Zhao C. Y. Xing G. M. Zhang P. C.
Jiang "Research on OpenFlow-based SDN technologies"
Journal of Software vol. 24 pp. 1078-1097 2015.

[4] S. Jain A. Kumar et al. "B4: experience with a globally-
deployed software defined wan" ACM SIGCOMM
2016 Conference on SIGCOMM. pp. 3-14 2016.

[5] Singh J. Ong A. Agarwal et al. "Jupiter Rising: A Decade of
Clos Topologies and Centralized Control in Google's

SDN Controllers Comparison

Proceedings of Science Globe International Conference, 10th June, 2018, Bengaluru, India

5

Datacenter Network" ACM Conference on Special
Interest Group on Data Communication pp. 183-197
2015.

[6] K. Zhang Y. Cui H. Y. Tang J. P. Wu "State-of-the-Art
survey on software-defined networking (SDN)" Journal
of Software vol. 26 pp. 62-81 2015.

[7] T. Q. Zhou Z. P. Cai J. Xia M. Xu "Traffic engineering for
software defined networks" Journal of Software
vol. 27 pp. 394-417 2016.

[8] S. Scott-Hayward S. Natarajan S. Sezer "A Survey of
Security in Software Defined Networks" IEEE
Communications Surveys & Tutorials vol. 18 pp. 623-
654 2016.

[9] Blen A. Basta M. Reisslein "Survey on Network
Virtualization Hypervisors for Software Defined
Networking" IEEE Communications Surveys &
Tutorials vol. 18 pp. 655-685 2016.



