
Design and Performance Analysis Of 32 And 64 Point FFT Using Radix-2 Algorithm

Proceedings of AECE-IRAJ International Conference, 14th July 2013, Tirupati, India, ISBN: 978-81-927147-9-0

55

DESIGN AND PERFORMANCE ANALYSIS OF 32 AND 64 POINT FFT
USING RADIX-2 ALGORITHM

1K. SOWJANYA, 2B. LEELE KUMARI

Electronics and Communication dept, UCEK., JNT University, Kakinada, Andhra Pradesh, India

Abstract: Fast Fourier Transform is an algorithm used to compute Discrete Fourier Transform (DFT) of a finite series. This
Paper Proposes the performance analysis of 32 and 64 point FFT using RADIX-2 Algorithm and it concentrate on
Decimation-In-Time Domain (DIT) of the Fast Fourier Transform (FFT). Here we use Xilinx Design Suite 13.2 Version, by
using VHDL as a Design Entity and the Synthesis Result are Stimulated on Vertex Kit.FFT Computation Technique is used
in Wide Range of its Mathematics, Auto Correlation, Data Compression, Pattern Recognition etc. The Synthesis Results
Shows the Comparison of 32and 64 Point FFT in terms of Speed and Computational Complexity.

Keywords- Fast Fourier Transform (FFT), Decimation-In-Time (DIT-FFT), Discrete Fourier Transform (DFT), Radix-2,
VHDL.

I. INTRODUCTION

The Fourier Transform Decomposes a Wave form-
basically any Real world wave form into Sinusoids. It
is possible to generalize the Fourier transform on
discrete structures such as Finite Groups. The
Efficient Computation Of such structures, by fast
Fourier transform, is essential for high speed
computing.FFT algorithms are commonly employed
to compute DFTs, but there is a clear distinction is
that “DFT” refers to a Mathematical transformation,
regardless of how it is computed, whereas “FFT”
refers to a specific families of a algorithms for
computing DFTs. Fast Fourier Transform (FFT) is
developed by Cooley and Tukey in1965.Highly
efficient procedure for computing the DFT of a finite
series and requires less number of computations than
that of direct evaluation of DFT. Fast Fourier
transform (FFT) is based on decomposition and
breaking the sequence into smaller sequences and
combining them to get total sequence.

This paper Proposes and concentrate on the design of
32 and 64 point FFT and its performance analysis. By
using VHDL as a design entity the synthesis and
stimulation is done on Xilinx ISE Design Suite
13.2.A DFT Decomposes a sequence of values into
components of different frequencies. This operation
is useful in many fields but computing it directly
from the definition is often too slow to be practical.
An FFT is a way to compute the same result more
quickly: Computing a DFT of N-points, takes O(N2)
Arithmetical operations, while an FFT can compute
the same DFT in only O(NlogN) operations. FFTs
can decomposed using DFTs of even and odd points,
which is called a decimationin-time (DIT) FFT, or
they can decomposed using another approach which
is called a Decimation-infrequency(DIF) FFT.

Figure 1:-Block diagram of 32 point radix-2 FFT

Computation of the end point DFT corresponds of
computation of N samples of Fourier transform at N
equally spaced frequencies. Consider the input x(n) of
length N is a complex data sequence, its DFT X(k) is
also complex data sequence of length N which is
defined as

 (1)

Where k =0, 1 ...N-1, is known as
Twiddle factor.

Twiddle Factor coefficients are used to
combine the results from the previous stage to form
inputs to the next stage.

Figure 4:-FFT Algorithm of 64 point using Radix-2

Design and Performance Analysis Of 32 And 64 Point FFT Using Radix-2 Algorithm

Proceedings of AECE-IRAJ International Conference, 14th July 2013, Tirupati, India, ISBN: 978-81-927147-9-0

56

To evaluate all N values of X (k), the number of
complex multiplications and additions required for
DFT are N2 and N (N-1) and for FFT those values
are reduced to (N/2) log2N and Nlog2N to compute
the input sequence x(n).

II. RADIX-2

The Radix indicates the size of FFT decomposition.
In this paper Radix is 2 which is single-Radix FFT.
For single Radix FFTs, transform size must be choose
according to the power of Radix. Here we use 32and
64 sizes, which is 25 and 26.

The Radix-2 Decimation-in-Time FFT (DIT-FFT) is
applied to the two Points N/2 DFT’s. To find the
number of butterfly stages required to compute N
length sequence can be M=log2N, and N/2 butterfly
operations are computed in each stage. In this paper,
there are 5 butterfly stages and 16 butterfly operations
are computed to produce 32 Point FFT. Similarly, 6
butterfly stages and 32 butterfly operations are
computed to produce 64 Point FFT. Fig 1and Fig 3
shows the butterfly stages whereas, Fig 2 and Fig 4
shows the butterfly diagram of each and every stage.
In DIT-FFT the given input sequence is in shuffled
order and the output sequence is in natural order. By
using Bit-Reversal input sequence gets shuffled.

Figure 3:-Block diagram of 64 point radix-2 FFT

The Radix-2 decimation in time FFT is the basic form
of Cooley-Tukey implementation algorithms. Radix-2
first computes the DFT of the even index inputs and
the odd index inputs and then combines the two
results to produce the entire DFT sequence. The basic
computation block in the FFT is butterfly in which
the two inputs are combined to give two outputs.

Figure 4:-FFT Algorithm of 64 point using Radix-2

The FFT operation of butterfly diagram is shown in
the below figure, and the powers of the twiddle
factors associated in butterflies are in natural order.

Figure 5:-Basic Butterfly Diagram

The twiddle factor exponent k of each stage is
calculated by using below equation

K=Nt/2m where t=0, 1, 2,......2m-1

III. IMPLEMENTATION PROCEDURE

The implementation procedure of 32 and 64-bit radix-
2 FFT algorithm using VHDL has following steps:-
1. Select an N-point sequence, where N is equivalent
to 32 and 64.
2. Sort the samples in bit-reversed order. 3. Apply the
first stage butterfly using adjacent pairs of numbers.
4. Apply the second stage butterfly using pairs that
are separated by 2.
5. Apply the third stage butterfly using numbers that
are separated by 4.
6. Similarly apply the fourth and fifth stage butterfly
using numbers that are separated by 8 and 16.
7. Continue butterfly the numbers in the buffer until
we get separation of our sequence upto length N/2.
8. The final output values at the last stage will get in
the normal order that is from 0 to N.

IV. SOFTWARE USED

The goal of the VHDL synthesis is to create a design
that implements the required functionality and
matches the designer’s constraints in speed, area and
power. The 32 and 64 point FFT proposed in this
paper is been simulated using Xilinx ISE Design
Suite 13.2 with the device family as vertex6 lower

Design and Performance Analysis Of 32 And 64 Point FFT Using Radix-2 Algorithm

Proceedings of AECE-IRAJ International Conference, 14th July 2013, Tirupati, India, ISBN: 978-81-927147-9-0

57

power. The summary of the device description is as
follows.

Table 1:-Design Properties

V. SOFTWARE SIMULATION

The RTL view of butterfly structure obtained after
simulation of 32 and 64 point FFT is shown in below
figure. Figure

Figure 6:-RTL view of 32 point FFT butterfly component

Figure 7:-RTL view of 64 point FFT butterfly component

The Vertex 6 device utilization summary of 32 and
64 point are in shown in below table 2 and 3. Table

Table 2:- Device Utilization Summary for 64 Point

FFT

Table 3:- Device Utilization Summary for 64 Point

FFT

In simulation results of 32 and 64 point FFT the input
x is a signed vector and output y is complex numbers,
in which both x and y are represented in binary
format. The results are shown in below figure.

Figure 8:-Synthesis result for 32 point FFT

Figure 9:-Synthesis result for 64 point FFT

Design and Performance Analysis Of 32 And 64 Point FFT Using Radix-2 Algorithm

Proceedings of AECE-IRAJ International Conference, 14th July 2013, Tirupati, India, ISBN: 978-81-927147-9-0

58

The minimum delay, Total Real Time to XST
Completion and Total CPU Time to XST Completion
of 32 and 64 Point FFT using Radix-2 algorithm are
tabulated.

Table 4:- Time Delay of 32 and 64 Point FFT

The Performance analysis of 32 and 64 Point FFT are
shown in figure 9.

Figure 9:-Performance analysis

CONCLUSION

In this paper, we have proposed 32 and 64 point FFT
design using Radix-2 algorithm, and their simulation
and synthesis are done by Xilinx Synthesis Tool on
Vertex. The test bench waveforms are displayed by
using Xilinx ISE Design Suite 13.2.The Performance
analysis of 32 and 64 Point FFT are represented by
using the parameter, Minimum delay .The
Performance analysis can also be done between
single Radix and Split-Radix FFT algorithms by
taking various parameters into consideration.

REFERENCES

[1] Asmita Haveliya, “Design and simulation of 32-point FFT

using Radix-2 Algorithm for FPGA Implmentation”,2012
second International conference on Advanced Computing and
Communication Technologies.

[2] Sneha N.Kherde, Meghana Hasamnis, “Efficient Design and
Implementation of FFT”, International Journal of
Engineering Science and Technology (IJEST), ISSN: 0975-
5462 NCICT Special Issue Feb 2011.

[3] Ahmed Saeed, M.Elabably, G.Abdelfadeel, and N.I. Eladway.
“Efficient Implementation of FFT/IFFT Processor”,
International Journal of Circuits, Systems and signal
Processing, Issue 3, volume 3, 2009.

[4] Saad Bouguezel, M.Omar Ahmad, “Improved radix-4 and
Radix-8 FFT Algorithms”IEEE department of Electrical and
Computer Engineering, Concardio University, 1455 de
Maisonneuve Blvd.West Monteral.P.Q.canada.

[5] Ali Saidi, “Decimation-in-Time-Frequency FFT Algorithm”
Motorola Applied Research, Paging and Wireless Data Group
Boynton Beach.

[6] Vassil S.Dimitrov, Kimmo U.JarVinen, and Jithra Adikari,
“Area-Efficient Multipliers Based on Multiple-Radix
Representations”IEEE Transactions on Computers, Vol 60,
February 2011.

[7] Alan V.Oppenhem, Ronald W.Schaler with John R.Back,
Discrete Time Signal Processing, Second Edition. [8]
B.Parhami, Computer Arithmetic, Algorithms and Hardware
Designs, 1999.



